
I N F L U E N C E  OF P R E S S U R E  D R O P  ON F L O W  OF L O O S E  

M A T E R I A L  T H R O U G H  V E R T I C A L  C H A N N E L S  

A.  G. T s u v a n o v  UDC 532.529.5 

The analogy between flow of a fluid and flow of a loose mater ia l  out from the space beneath a 
vault is used, in conjunction with an investigation of loose-mate r ia l  flow, as a basis for a p ro -  
posed equation for the weight flow rate of loose mater ia l  in the presence  of a p ressu re  dif- 
ferentia[.  

In many types of equipment, we find loose mater ia ls  flowing out through a hole in the horizontal  bot -  
tom of a vert ical  channel; this can occur  in the presence  of a p r e s su re  differential between the top and 
bottom of the layer  of mater ia l  in the channel. We shall consider  the influence of the gas flow produced by 
the p re s su re  differential on the flow of loose mater ia l s  through a hole in the horizontal body; we proceed 
from the following assumptions.  

It has been shown [1] that the rate of gravitational outflow is determined by the p res su re  exerted by 
the mater ia l  on the plane of the discharge hole. The dynamic vault that forms in gravitational flow near  a 
d ischarge hole tends to rel ieve the plane from the p res su re  exerted by the higher layers  of material  [2]. 
Owing to the existence of the dynamic vault, the p r e s su re  at the plane of the hole equals the weight of the 
par t ic les  filling the space beneath the vault [3, 4]. 

It is natural  to assume that such a vault, whose dimensions and form depend on the diameter  of the 
hole and the mechanical  proper t ies  of the mater ia l  [5], also exists when a gas flows through a dense layer  
of mater ia l  in the channel. In such ease,  the plane of the discharge hole will experience the p re s su re  ex-  
erred by the volume of loose mater ia l  under the vault, and the additional p r e s su re  determined by the dif-  
ference of p re s su res  in the gas flow between the top and bottom of the space under the vault. This conclu-  
sion has been confirmed elsewhere [6, 7]; it was shown that the rate of outflow is not affected by the entire 
p re s su re  difference across  the layer ,  but only by that portion equaling the difference in p re s su res  "near the 
hole." 

Thus we can make use of the famil iar  fluid-flow equation 

. / ~  ~(1- -ev)hv  + h P v  
o = ~ ( 1 - - e  v) y | /  z g -  ,~( i_ ~v) ...... (1) 

which can be written as follows: 

{ l - - e v  /hst_Jr_APst 
( 1--sv ) ~ 5'b[ 1--est ] (2) 

G = ~t I - -  est ~b F 2g 't'b 

Within the zone of the mater ia l  that is far  distant from the discharge hole, the p res su re  gradient is 
constant over the layer  height since the gas velocity and the charac te r i s t i cs  of the moving layer  are also 
constant. We assume in approximation that the p re s su re  gradient remains constant up to the level that 
corresponds to the height of the dynamic vault, below which the gradient increases  by a factor  of k, owing 
to the reduction in the flow cross  section (when Dye > D); thus we obtain 
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TABLE i. C o m p a r i s o n  of P r e d i e t e d V a l u e s  of D i s c h a r g e  Coeff ic ient  

D/d 7 10 20 30 40 50 60 

0,285 0,33 0,39 0,41 0,42 0,43 0,435 

Error,% --19,3 --13,7 0 +8,5 -}-14,3 +16,2 q-19,5 

T A B L E  2. C h a r a c t e r i s t i c s  of L o o s e  Ma te -  
r i a l s  

River sand 
,t 

Slag pellets 
Millet 
Corundum 

Material d, mm v b, kg/m ~ 

0,22 
O, 33 
0,8 
1,4 
2,0 
0,33 

1370 
1370 
1450 
1680 
850 

1920 

F r o m  (3), (4), and (2), we have 

\ - -  S t  / 

5P 
- I~, ( 3 )  

hPv H _ h v  + h  v 

k 

It has  been shown in [1, 3-5] that the p r e s s u r e  e x -  
e r t ed  by the loose  m a t e r i a l  on the plane of the d i s c h a r g e  
hole ,  which is nea r ly  the s a m e  as the p roduc t  of the bulk 
dens i ty  of the m a t e r i a l  by the d i a m e t e r  of the hole ,  can 
be taken to equal 

hv t--~.v = D .  (4) 
1-- est 

,/b F 2gD 1 + 1-- ~ t  
H--D l - - ~ v  } .- 

k( l- 

(5) 

The publ i shed  l i t e r a t u r e  conta ins  c o n t r a d i c t o r y  opinions as to the value of the ave r age  poro,~ity of the 
space  under  the vault :  it is o rd ina r i l y  a s s u m e d  that ~v > Sst [4, 5], but it was  a s s e r t e d  in [8] that the lowest  
p o r o s i t y  is found n e a r  the d i s c h a r g e  hole ,  i .e . ,  in the space  under  the vaul t .  It can be a s s u m e d  that ~v d e -  
pends on the s i ze  of the hole ,  the phys ica l  p r o p e r t i e s  of the m a t e r i a l ,  e tc . ,  i .e . ,  fundamenta l ly  on those 
p a r a m e t e r s  that m u s t  d e t e r m i n e  the values  of the coeff ic ients  At and k. It is t h e r e f o r e  de s i r ab l e  to let pp 
= #(1 - g v ) / ( 1  - S s t )  ~ and kp = k(1 - g s t ) / ( 1  - r  Using pp and kp, and r e m e m b e r i n g  that the heigb:  of the 
l a y e r  is no t i ceab ly  g r e a t e r  than the d i a m e t e r  of the hole ,  on the bas i s  of (5) we can wr i t e  

' / (6) 

?b k~--- 

P r o c e e d i n g  with the ana logy  between fluid flow and the flow of loose m a t e r i a l  f r o m  a vault  vo lume,  
we a s s u m e  that the d i s c h a r g e  coeff ic ient  in (6) does not depend on the weight  flow ra te .  In this ca se ,  we 
can a s s u m e  that it is ident ica l  f o r  both g rav i t a t iona l  flow and fo r  gas  f i l t r a t ion ,  p rov ided  that the flow takes  
p lace  in the s a m e  med ium (in the a t m o s p h e r e ,  fo r  example) .  

C o m p a r i n g  the r e l a t ionsh ip  

2.15 D2.5 
Yb (7) Ogr= 1 q- ll .8(d/D) 

posed  in [9] and the equat ion 

which can be obtained from Eq. (6) if we let Ap = 0, we find 

i 
Pro= 1.61_bl9(d/D ) (9) 

Table  1 c o m p a r e s  the values  of d i s c h a r g e  coeff ic ient  p r ed i c t ed  by Eq. (9) and by the equation obtained 
f r o m  the r e l a t ionsh ip  p r o p o s e d  in [6] fo r  t h e w e i g h t f l o w r a t e  of loose  m a t e r i a l  f lowing in the a t m o s p h e r e  
through a hole in a ho r i zon ta l  bot tom and flowing in the p r e s e n c e  of excess  p r e s s u r e  above the l a y e r  of 
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Fig. 1. Experimental  
setup: 1) vert ical  chan-  
nel; 2) replaceable dia-  
phragm; 3) vessel ;  4) 
differential manometer ;  
5) hole; 6) col lector;  7) 
to blower.  

mater ia l  in the channel. The r e sea rch  of [6] was car r ied  out at D/D < 60, in 
the main. 

Table 1 supports the above assumption that #p is independent of the 
weight flow rate and shows that we can take the discharge coefficients occu r -  
r ing in (6) and (8) to be identical (to within •  Thus from (6) and (8) 
we have 

aP . (10) 
6gr ~b kp 

The mater ia l s  whose charac te r i s t i cs  are given in Table 2 were invest i-  
gated with air  f i l tering through the layer  of mater ia l  in the channel. 

It should be noted that in talking about loose mate r ia l s ,  we are re fe r r ing  
to ideally free-f lowing media,  i.e., adhesive forces between part icles  are ab-  
sent or slight. 

The experimental  setup (Fig. 1) consis ted of the vessel  3, in which ex-  
cess  p r e s su re  for vacuum was created,  a ver t ical  channel 1, the interchange-  
able diaphragm 2 with the discharge hole, and the col lector  6. 

The p re s su re  in the vessel  under the discharge hole was measured  by a 
type MMN mic romanomete r ,  or a U-tube differential manometer  4. Glass 
tubes of 29, 50, and 77 mm inside diameter  were used as the ver t ical  channel. 
The diameter  of the discharge hole was varied from 6.7 to 40 mm, the p r e s -  
sure  drop ac ross  the layer  f rom -4000  to +4000 N / m  2, and the height of the 
layer  in the ver t ical  channel from 100 to 500 mm. 

During each experiment ,  the height of the layer  in channel 1 was maintained constant,  as was the 
p r e s s u r e  in vessel  3 below the hole. The mater ia l  flowed f rom the channel through the discharge hole and 
accumulated in the vessel .  During or after the experiment ,  the mater ia l  was removed through hole 5 to the 
col lector  6. The weight flow rate was determined by weighing the mater ia l  that flowed through the discharge 
hole within a m e a s u r e d  time interval.  Equation (10) was used to determine the coefficient kp; the g rav i ta -  
tional flow rate was provided for on the basis of (7). The p re s su re  differential was taken to be positive if 
the gas and the loose mater ia l  flowed in the same direction,  and negative if they flowed in opposite d i r ec -  
tions. 

It was established that under the above conditions, kp depends on the ratio of the areas of the channel 
and discharge hole, and can be found as 

k v = 0.78+0.22 (Dgr/D)~. (11) 

Figure 2 shows that the experimental data obtained for D/d = 7 to 200, Dvc/D = 1 to 11.5, H = 100 to 
500 ram, and AP = -4000 to +4000 N/m 2 are generalized by Eq. (10), where kp is found from (11), and Gg r 
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Fig. 2. 

m ~p/TbH 

Generalization of experimental data. 
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T A B L E  3. C o m p a r i s o n  of (12) wi th  E x p e r i m e n t a l  Da ta  Ob ta ined  in 
[6] fo r  D v c =  203 m m .  

D, mm AP, kg/m 2 

C~, g/sec 

[6 ]  Eq. (2) 
Error, % 

6,35 

6,35 

12,7 

band, d=O. 281 

3515 134 I 
4218 138 
7733 I 200 

mm . ~b = 640 Saran, d = 0. 22 

7030 108 
7030 113 
9120 130 

4218 282 
6000 350 

ram; "7b = 1370 kg/m 3 

118 
127 
172 

kg/m 3 

120 
120 
I37 

350 
410 

--12,0 
- -6 ,5  
--14,0 

+i1,0 
@ 6,2 
+ 5 , 4  

+25,5 
+17,2 

G 

fSO 

/ 00  

Z / # ",x 

3 

0 - - . - - b  

o tOO 2o0 AP v 

F i g .  3. Da ta  f r o m  a) Eq. (2); b) 
[7] (G, g / s e c ;  A P v ,  kg /m2) :  1) 
s a n d ,  d =  0 . 4 5 6 m m ;  Yb = 1 5 9 0  
kg /m3 ;  D = 14.1 r am;  2) KCI,  d 
= 0.67 r am;  7b = 1230 kg /m3 ;  D 
= 1 4 . 1 m m ;  3) s and ,  d = 0 . 6 8 m m ;  
7b = 1 5 9 0 k g / m 3 ;  D = 1 0 m m ;  4) 
s and ,  d = 0.456 r am;  Yb = 1590 
kg /m3 ;  D = 7.1 r am.  

f r o m  Eq.  (7); the a v e r a g e  e r r o r  is  • and the g r e a t e s t  e r r o r  
• In F ig .  2, we le t  Hp r e p r e s e n t  { [ ( H - D ) / k p ]  + D}. 

The r e s u l t i n g  r e l a t i o n s h i p  

G= 2.15YbD2"S ~ [ AP ] l+lt.8(d/D) 1+ H--D (12) 

Yb 0.78+~.~(~gr/D)~ t D 

is s u i t a b l e  fo r  d e t e r m i n i n g  the l o o s e - m a t e r i a l  f low r a t e  in the p r e s -  
ence  of a c o u n t e r - d i r e c t e d  gas  f low (fxP taken with  m i n u s  s ign) ,  with 
gas  f lowing in the s a m e  d i r e c t i o n  (AP taken  with  p lus  s ign) ,  and fo r  
f r e e  g r a v i t a t i o n a l  f low (AP = 0). When Eq.  (12) is u sed  for  f low in 
o p p o s i t e  d i r e c t i o n s ,  we m u s t  r e m e m b e r  that  when - A P / 3 % H p  ~ - 1 ,  
the e x p e r i m e n t a l  da t a  have  p o o r  r e p r o d u c i b i l i t y ,  so  that  this  equa t ion  
can  be u s e d  f o r  - A P / Y b H  p > - 0 . 8 .  

Le t  us c o m p a r e  our  e x p e r i m e n t a l  da t a  with those  of s i m i l a r  
s t u d i e s .  

In [6], va lue s  of the m e a n  weight  flow r a t e  a r e  g iven  o v e r  a 
t i m e  i n t e r v a l  d u r i n g  which the he igh t  of the l a y e r  was  not  he ld  c o n -  
s t an t ;  the i n i t i a l  s p i l l i n g  l eve l  was  known,  but  the l eve l  at the end of 
each  e x p e r i m e n t  was  not  i nd i c a t e d .  It can be  a s s u m e d ,  h o w e v e r ,  
that  fo r  high r a t e s  of f low,  w h e r e  a l l  of the m a t e r i a l  lef t  the v e s s e l  
wi th in  30-100 s e e ,  the f ina l  l a y e r  he igh t  was  s m a l l ,  amoun t ing  to 50-  
100 m m .  In such  c a s e ,  we can use  Eq.  (12) to compu te  the m e a n  
we igh t  flow r a t e .  

T a b l e  3 shows  v a l u e s  c o m p u t e d  f r o m  (12), t o g e t h e r  wi th  the e x p e r i m e n t a l  da t a  of [6]; as  we s e e ,  the 
e r r o r  in the p r e d i c t e d  va lues  r a n g e s  f r o m  - 1 4  to +25.5%. 

C e r t a i n  s p e c i a l  equa t ions  have  been  p r o p o s e d  in [7] fo r  d e t e r m i n i n g  the r a t e  at which l o o s e  m a t e r i a l  
f lows th rough  a ho le  in the h o r i z o n t a l  b o t t o m  of a v e s s e l  f o r  which  Dvc = 140 m m ,  with e x c e s s  p r e s s u r e  
above  the l a y e r .  Each  of t h e s e  equa t ions  is  s u i t a b l e  fo r  one p a r t i c u l a r  m a t e r i a l  and one p a r t i c u l a r  ho le  
d i a m e t e r ;  the p r e s s u r e  d i f f e r e n t i a l  " n e a r  the h o l e "  is u s e d  as  the d e t e r m i n i n g  quan t i ty .  

I t  was  e s t a b l i s h e d  that  the va lue s  found in this  s tudy  fo r  the p r e s s u r e  d i f f e r e n t i a l  " n e a r  the h o l e "  d i f -  
f e r  by  no m o r e  than 30% f r o m  the va lue s  of AP v c o m p u t e d  f rom (3) wi th  the a id  of (4) and (11). 

Thus the p r e s s u r e  d i f f e r e n t i a l  " n e a r  the ho le"  and AP V w e r e  taken  to be  equa l .  On this  b a s i s ,  in F ig .  
3 we have  c o m p a r e d  the c u r v e s  r e p r e s e n t i n g  the equa t ions  of [7] and Eq. (2), which  was  u s e d  in the d e r i v a -  
t ion of (12), and in which  pp = # ( 1 -  a v ) / ( 1 - r  ~ was  found f r o m  Eq.  (9); it  was  a s s u m e d  that  ( 1 -  ev) 
/(1 - as t )h  v = D. 
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As we see  f rom Fig. 3, the d i sc repancy  between the curves  does not exceed 20%. 

Final ly ,  a graph has been given in [10] for  refining the flow ra te  of a c r a c k i n g - p r o c e s s  ca ta lys t  under 
counter  p r e s s u r e  and for  Dvc = D; it co r r e sponds ,  to within 12%, to the left side of the graph shown in 
Fig. 2 for  Eq. (10), if we a s s um e  that H = Hp for  D v c =  D. 

Thus Eq. (12), although re la t ive ly  uncomplicated,  is quite un iversa l  and is sa t i s fac to r i ly  accura te ,  
as is indicated by our exper imenta l  data and those of [6, 7, 10]; it can be used to de te rmine  the influence 
of a i r  f i l t ra t ion on the flow of ideal f ree - f lowing  m a t e r i a l s  through a hole in a horizontal  plane. 
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N O T A T I O N  

the hole d iamete r ;  
the d i a m e t e r  of the ver t i ca l  channel; 
the theore t ica l  pa r t i c le  s ize;  
the weight flow ra te  of the loose ma te r i a l  in unit t ime;  
the gravi ta t ional  acce le ra t ion ;  
the a r ea  of the hole; 
the height of the l ayer  in the ve r t i ca l  channel; 
the height of the dynamic vault;  
a coefficient;  
the overa l l  p r e s s u r e  different ia l ;  
the p r e s s u r e  different ia l  between the upper  and lower  levels  of the vault; 
the bulk density of the loose ma te r i a l ;  
the spec i f ic  gravi ty  of the ma te r i a l ;  
the ave rage  poros i ty  in the space  beneath the vault;  
the poros i ty  of the s ta t ionary  layer ;  
the d ischarge  coeff icient .  

S u b s c r i p t s  

gr  is the gravi ta t ional  flow; 
p is the pred ic ted  value.  
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